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Introduction
In the professional male game, the serve has been reported 
to be the most important stroke.(1) From a strategy and 
tactics perspective, the main keys to a successful serve 
are velocity, spin and placement. Statistics from the 
2009 US Open show that for the men’s draw, 5 of the 
top 10 ranked players also had the highest serve speed.
(2) Indeed, the ability for tennis players to produce high 
ball velocity during the serve is a crucial element of a 
successful play because it puts the opponent under stress 
and may hinder its return. Consequently, if you ask tennis 
coaches “what their main priorities when teaching tennis serve 
are”, their responses could be “improving performance, 
especially ball velocity” but also “preventing injury”. Indeed, 
epidemiological studies have associated the serve with 
overuse injuries in the upper limb joints,(3,4,5) which are 
a common medical problem in all competitive levels in 
tennis.(6,7) The purpose of this review is to assimilate all the 
available scientific research on tennis serve biomechanics 
related to ball velocity and upper limb joint injuries. 
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Ball Velocity and Tennis Serve Kinematics
In tennis, the serve is a sequence of motions 
referred to as a ‘kinetic chain’8 that begins 
with the lower limb action and is followed 
by the trunk and the upper limb. Fleisig et al. 
(9) have shown that tennis players produce a 
rapid sequence of segment rotations (Table 
1). The order of maximal angular velocities is 
trunk tilt (280°/s), upper torso longitudinal 
rotation (870°/s), pelvis rotation (440°/s), 
elbow extension (1510°/s), wrist flexion 
(1950°/s), and shoulder internal rotation 
(2420°/s).(9) These joint and segmental rotation 
contributions to racket velocity in the serve are 
of great interest in the literature.(10,11,12,13) The 
major contributors to the mean linear velocity 
of the racquet at impact are internal rotation 
of the shoulder, flexion of the hand, horizontal 
flexion and abduction of the shoulder and trunk 
flexion (see Table 2). 

 
Studies

Elliot et al (10)

Fleisig et al (9)

Reid et al (14)

Wagner et al (15)

Knee 
extension (°/s)
/ 
800 ± 400
533 ± 69 
/

Pelvis 
rotation (°/s)
/
440 ± 90
/
510 ± 110

Shoulder 
rotation (°/s)
/
870 ± 120
/
/

Shoulder Internal 
rotation (°/s)
2090 ± 330
2420 ± 590
/
5580 ± 2350

Elbow
Extension (°/s)
1230 ± 180
1510 ± 310
/
1670 ± 380

Wrist
Flexion (°/s)
1720 ± 580
1950 ± 510
/
/

Table 1  
Peak values of joint rotations during the tennis serve

Table 2  
Segment contributions to linear racket velocity in the tennis serve



The proficiency of these rotations through the kinetic 
chain involves a transfer of linear and angular momentum 
from the legs to the trunk and then to the arm and the 
racket.(16) Although the concept of angular momentum 
transfer is frequently reported to be critical in producing 
explosive serves, (8,14,17,18,19,20,21,22) few studies have studied 
angular momentum during the tennis serve.(11,16,23) Only 
Bahamonde (16) has described, quantified and explained 
the evolution of angular momentum during the tennis 
serve about the three orthogonal axes (transverse or 
“cartwheel”, anteroposterior or “shoulder-over-shoulder”, 
longitudinal or “twist”) in five collegiate tennis players. 
It has been reported that most of the clockwise angular 
momentum about the transverse axis is concentrated in 
the trunk and the racket-arm. The angular momentum 
about the longitudinal axis of rotation is small and 
lacked a consistent pattern. Moreover, Bahamonde (16) 
has noticed that the difference between the players with 
the highest ball speeds (51.0, 46.3 and 50.4 m/s) and the 
players with the lowest ball speeds (39.8 and 43.9 m/s) is 
the contribution of the trunk to the total anteroposterior 
axis angular momentum. A recent study has identified 
the relationships between segmental angular momentum 
and ball velocity in professional players. The results of this 
study indicate that from maximal elbow flexion to ball 
impact, the players with the highest values of trunk and 
racket-arm angular momentums about the transverse axis 
are those with the highest ball velocity. As a consequence, 
it seems that the ability of a player to produce high upper 
body segmental angular momentum values about the 
transverse axis during the serve increases ball velocity. For 
the cocking, and acceleration phases of the serve, there 
were significant correlations between the trunk angular 
momentum values about the anteroposterior axis and ball 
velocity. In other words, the more the players produce 
trunk angular momentum about the anteroposterior 
axis between maximal elbow flexion and ball impact, the 
higher the ball velocity will be. These strong relationships 
confirm the results of Bahamonde (16) suggesting that the 
rotation of the trunk about the anteroposterior axis (also 
called “shoulder over shoulder” rotation) differentiates 
players with the highest ball speeds from players with the 
lowest ball speeds. 

Ball Velocity and Tennis Serve Kinetics
Elliott et al. (24) have demonstrated that male professional 
players commonly recorded higher torques and forces 
at the shoulder and elbow joints than their female 
counterparts. According to them, these higher kinetic 
measures are an important factor in producing the 
significantly higher serve velocity for this group of players. 
Davis et al. (24) have proposed efficiency measurements 
for the baseball pitch about the relationship between ball 
velocity and kinetics.(25) They divided joint loadings by 
ball velocity in order to better understand the pitcher’s 
efficiency. Indeed, a highly efficient pitcher or server is 
one who can maximize output (ball velocity) with the 
least joint load.(26) Martin et al. (27) shown that advanced 
tennis players are less “efficient” than professional ones 
since they increase both their shoulder and elbow 
kinetics compared to professional players without 
reaching higher ball velocity. It is assumed that the low 
efficiency measured in advanced players could be related 
to improper mechanics of the kinetic chain. It has been 
indicated that any disruption to the kinetic chain caused 
by improper mechanics could result in increased loading 
of upper limb joints in the sequence of movements.(28) As 
a consequence, it can be supposed that advanced players 
tried to compensate for the kinetic chain disruption 
caused by improper serve mechanics by increasing 
segment activation and loading. (29)

Upper Limb Joint Injuries 
and Tennis Serve Biomechanics
Overuse injuries in sport can result from a complex 
interaction between various risk factors such as age, 
gender, muscle weakness and imbalance, poor equipment, 
number of repetitions during trainings and competitions, 
and excessive joint loadings.(30)  Among all the risk factors 
in overhand throwing and striking activities, excessive 
joint loadings (forces and torques) are known to be a 
crucial risk factor causing repetitive microtrauma that 
are responsible for overuse upper limb joint injuries.
(28,29,30,31) Indeed, it appears logical that players subjected 
to higher loadings might be more likely to sustain joint 
overuse injury.(32)  Concerning tennis, the serve has 
been reported to be a traumatic skill, as it causes high 
loads on the shoulder and elbow joints in professional 
tennis players,(24,32) almost identical to those reported for 
baseball pitchers (Table 3).(33)  

The traumatic effect of the tennis activity is also linked to 
the repetitive nature of the serve movement throughout 
the player’s competitive career. Interestingly, tennis 
players hit between 50 and 150 serves during a match. 
This result is increased by the number of single matches 
played by the players during a competitive season (around 
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Studies

Number of players
Trunk flexion
Shoulder internal rotation
Shoulder horizontal flexion 
and abduction
Elbow extension
Elbow pronation
Wrist flexion 
Wrist ulnar deviation

Elliot 
et al (10)

11
9.7 ± 1.8
54.2 ± 4.1

12.9 ± 5.9
-14.2 ± 6.4
5.2 ± 4.1
30.6 ± 9.1
0.6 ± 1.2

Sprigings 
et al (12)

1
7.4
30

24
/
15
26
/

Tanabe 
et al (13)

66
/
41.1 ± 14.7 

6.4 ± 11.7
3.2 ± 6.0
3.6 ± 5.0
31.7 ± 7.5
0.8 ± 5.9
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60 matches), without considering double matches and 
training sessions.(14) This repetition of serves inflicted on 
the upper limb joints in competitive tennis players may 
explain why overuse injuries of the upper limb joints are 
a common medical problem in all competitive levels in 
tennis.(4,34,35,36) Indeed, these overuse injuries concern not 
only professional tennis players but also recreational and 
advanced competitive players.(6,7,35) Tennis is a world-
class competitive sport attracting tens of millions of 
players all around the world, and the majority of them is 
presumed to be recreational or advanced rather than elite. 
Consequently, Martin et al.(27) have compared the joint 
kinetics and stroke production efficiency for the shoulder, 
elbow, and wrist during the serve between professionals 
and advanced tennis players. Peaks of shoulder inferior 
force, shoulder anterior force, shoulder horizontal 
abduction torque, and elbow medial force are significantly 
higher in advanced players.(27)  Ball velocity is significantly 
faster for the professional players (177.8 ±17.3 km/h) 
compared to the advanced players (143.3 ± 14.4 km/h).
(27) Consequently, professional players are more efficient 
than advanced players, as they maximize ball velocity with 
lower or similar joint kinetics. Since advanced players are 
subjected to higher joint kinetics, the results suggest that 
they appear more susceptible to high risk of shoulder and 
elbow injuries than professionals, especially during the 
cocking and deceleration phases of the serve.
According to Fortenbaugh, changes in kinematics 
can increase or decrease velocity or not affect it at all.
(37) Clearly, any kinematic pattern that significantly 
increases kinetics values without increasing velocity 
is pathomechanical. Indeed, even minor technical 
and temporal errors, which are continually repeated 

throughout a match, a competitive season, or a career, 
may affect the performance, increase joint kinetics, and 
consequently cause tendon overuse microinstability 
problems.(30,38)  Conversely, it has been suggested that 
proper temporal mechanics may enable athletes to achieve 
maximum performance with minimum chances of 
injury. Concerning the tennis serve, it has been reported 
that a poor leg drive decreases ball velocity (19)  and 
increases shoulder and elbow kinetics during the tennis 
serve (+15 % for the peak of shoulder internal rotation 
torque and +18 % for the peak of elbow varus moment). 
(24) Moreover, Elliott et al. (24) shown that the type of 
backswing influences shoulder anterior force. Indeed, 
higher normalized anterior force at the shoulder joint 
was noticed for those players with an abbreviated swing 
compared with those players who used a full backswing 
(+ 34 %). In baseball, it is believed that the safest and 
most efficient pitching depends on the correct timing 
and sequence of motions as much as the quality of the 
motions themselves.(25) In such a sequence of motions, 
the timing of trunk and shoulder rotations seems to be 
crucial because the trunk and the shoulder are links that 
considerably contribute to the body angular momentum 
and can affect tennis performance.(23,39) Consequently, 
research has focused on the effects of trunk rotation 
timing on upper limb joint kinetics during the tennis 
serve. (40)  The purposes of this study were to measure the 
effects of temporal parameters on both ball velocity and 
upper limb joint kinetics to identify pathomechanical 
factors during the tennis serve and to validate these 
pathomechanical factors by comparing upper limb joint 
injured and non-injured players. The later timing of peak 
trunk angular velocities and the improper timing between 
the shoulder horizontal adduction and the external 

 
Study

Elliot et al (24)

Reid et al (32)

Fleisig et al (43)

Fleisig et al (33)

Population

8 professional 
tennis players
12 elite tennis 
players
60 professional 
baseball players
26 elite baseball 
players

Shoulder internal 
rotation torque 
(N/m)
71 ± 15

23 ± 8

68 ± 15

67 ± 11

Shoulder horizontal 
adduction torque 
(N/m)
108 ± 25

/

109 ± 85

100 ± 20

Elbow varus 
torque
(N/m)
78 ± 12

/

64 ± 15

64 ± 12

Elbow flexion 
torque 
(N/m)
37 ± 23

/

58 ± 13

61 ± 11

Shoulder 
proximal 
force (N)
608 ± 110

229 ± 52

1070 ± 190

660 ± 110

Table 3  
Peak values of joint kinetics measured for the tennis serve and the baseball pitching



111

rotation are indeed associated to higher upper limb joint 
kinetics and lower ball velocity.(40)  Non-injured players 
are able to maximize ball velocity and reduce upper 
limb joint kinetics by rotating their trunk at maximal 
velocities earlier than injured players, allowing the energy 
to pass from the trunk to the shoulder at precisely the 
right timing within the correct sequence of movements. 
Moreover, during the cocking and acceleration phases 
of the tennis serve, the arm moves from horizontal 
abduction to adduction and to extreme angles of external 
rotation. The correlation analyses show that the more 
the instant of shoulder external rotation precedes the 
instant of shoulder horizontal adduction, the more the 
shoulder anterior force (r=0.40, p<0.001) and horizontal 
abduction torque increase (r=0.40, p<0.001) and the 
more the ball velocity decreases (r = -0.26, p<0.05).
(40) According to the results, non-injured players are 
more effective because they achieve shoulder horizontal 
adduction just before extreme positions of external 
rotation. As a consequence, they are able to maximize 
ball velocity and limit upper limb joint loadings by using 
proper temporal parameters during the serve. Conversely, 
injured players ‘‘leave’’ their arm in horizontal abduction 
for too long during the shoulder external rotation phase. 
Consequently, injured players reach significantly lower 
ball velocities, and demonstrated higher joint kinetics.
(40)  Excessive shoulder horizontal abduction that occurs 
during the late cocking phase of the throwing motion has 
been reported to be critical for internal impingement41 
caused by a translation of the humeral head relative to the 
glenoid,(42)  which may lead to rotator cuff tears, shoulder 
tendinopathies, and labral lesions.

Conflicts of Interest: none declared.
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